Friday, June 21, 2013

1306.4673 (Daniel Perez-Becker et al.)

Atmospheric Heat Redistribution on Hot Jupiters    [PDF]

Daniel Perez-Becker, Adam P. Showman
Infrared lightcurves of transiting hot Jupiters present a trend in which the atmospheres of the hottest planets are less efficient at redistributing the stellar energy absorbed on their daysides---and thus have a larger day-night temperature contrast---than colder planets. No predictive atmospheric model has been published that identifies which dynamical mechanisms determine the atmospheric heat redistribution efficiency on tidally locked exoplanets. Here we present a two-layer shallow water model of the atmospheric dynamics on synchronously rotating planets that explains the observed trend. Our model shows that planets with weak friction and weak irradiation exhibit a banded zonal flow with minimal day-night temperature differences, while models with strong irradiation and/or strong friction exhibit a day-night flow pattern with order-unity fractional day-night temperature differences. To interpret the model, we develop a scaling theory that shows that the timescale for gravity waves to propagate horizontally over planetary scales, t_wave, plays a dominant role in controlling the transition from small to large temperature contrasts. This implies that heat redistribution is governed by a wave-like process, similar to the one responsible for the weak temperature gradients in the Earth's tropics. When atmospheric drag can be neglected, the transition from small to large day-night temperature contrasts occurs when t_wave ~ sqrt(t_rad/Omega), where t_rad is the radiative relaxation time, and Omega is the planetary rotation frequency. Alternatively, this transition criterion can be expressed as t_rad ~ t_vert, where t_vert is the timescale for a fluid parcel to move vertically over the difference in day-night thickness. These results subsume the commonly used timescale comparison for estimating heat redistribution efficiency between t_rad and the global horizontal advection timescale, t_adv.
View original: http://arxiv.org/abs/1306.4673

No comments:

Post a Comment