P. Figueira, M. Marmier, G. Boué, C. Lovis, N. C. Santos, M. Montalto, S. Udry, F. Pepe, M. Mayor
Aims. We study a subset of the planetary population characterized both by
HARPS and Kepler surveys. We compare the statistical properties of planets in
systems with m.sin i >5-10 M_Earth and R>2 R_Earth. If we assume that the
underlying population has the same characteristics, the different detection
sensitivity to the orbital inclination relative to the line of sight allows us
to probe the planets' mutual inclination.
Methods. We considered the frequency of systems with one, two and three
planets as dictated by HARPS data. We used Kepler's planetary period and host
mass and radii distributions (corrected from detection bias) to model planetary
systems in a simple yet physically plausible way. We then varied the mutual
inclination between planets in a system according to different prescriptions
(completely aligned, Rayleigh distributions and isotropic) and compared the
transit frequencies with one, two or three planets with those measured by
Kepler.
Results. The results show that the two datasets are compatible, a remarkable
result especially because there are no tunable knobs other than the assumed
inclination distribution. For m.sin i cutoffs of 7-10 M_Earth, which are those
expected to correspond to the radius cutoff of 2 R_Earth, we conclude that the
results are better described by a Rayleigh distribution with mode of 1 deg or
smaller. We show that the best-fit scenario only becomes a Rayleigh
distribution with mode of 5 deg if we assume a rather extreme mass-radius
relationship for the planetary population.
Conclusions. These results have important consequences for our understanding
of the role of several proposed formation and evolution mechanisms. They
confirm that planets are likely to have been formed in a disk and show that
most planetary systems evolve quietly without strong angular momentum exchanges
(abridged).
View original:
http://arxiv.org/abs/1202.2801
No comments:
Post a Comment