M. Jakubik, A. Morbidelli, L. Neslusan, R. Brasser
Modeling the formation of the ice giants Uranus and Neptune is a long-lasting
problem in planetary science. Due to gas-drag, collisional damping, and
resonant shepherding, the planetary embryos repel the planetesimals away from
their reach and thus they stop growing (Levison et al. 2010). This problem
persists independently of whether the accretion took place at the current
locations of the ice giants or closer to the Sun. Instead of trying to push the
runaway/oligarchic growth of planetary embryos up to 10-15 Earth masses, we
envision the possibility that the planetesimal disk could generate a system of
planetary embryos of only 1-3 Earth masses. Then we investigate whether these
embryos could have collided with each other and grown enough to reach the
masses of current Uranus and Neptune. Our results point to two major problems.
First, there is typically a large difference in mass between the first and the
second most massive core formed and retained beyond Saturn. Second, in many
simulations the final planetary system has more than two objects beyond Saturn.
The growth of a major planet from a system of embryos requires strong damping
of eccentricities and inclinations from the disk of gas. But strong damping
also favors embryos and cores to find a stable resonant configuration, so that
systems with more than two surviving objects are found. In addition to these
problems, in order to have substantial mutual accretion among embryos, it is
necessary to assume that the surface density of the gas was several times
higher than that of the minimum-mass solar nebula. However this contrasts with
the common idea that Uranus and Neptune formed in a gas-starving disk, which is
suggested by the relatively small amount of hydrogen and helium contained in
the atmospheres of these planets. Only one of our simulations "by chance"
successfully reproduced the structure of the outer Solar System.
View original:
http://arxiv.org/abs/1107.2235
No comments:
Post a Comment