Tuesday, August 6, 2013

1308.0629 (Jason W. Barnes et al.)

Measurement of Spin-Orbit Misalignment and Nodal Precession for the Planet around Pre-Main-Sequence Star PTFO 8-8695 From Gravity Darkening    [PDF]

Jason W. Barnes, Julian C. van Eyken, Brian K. Jackson, David R. Ciardi, Jonathan J. Fortney
PTFO 8-8695b represents the first transiting exoplanet candidate orbiting a pre-main-sequence star. We find that the unusual lightcurve shapes of PTFO 8-8695 can be explained by transits of a planet across an oblate, gravity-darkened stellar disk. We simultaneously and self-consistently fit two separate lightcurves observed in 2009 December and 2010 December. Our two self-consistent fits yield M_p = 3.0 M_Jup and M_p = 3.6 M_Jup for assumed stellar masses of M_* = 0.34 M_Sun and M_* = 0.44 M_Sun respectively. The two fits have precession periods of 293 days and 581 days. These mass determinations (consistent with previous upper limits) along with the strength of the gravity-darkened precessing model together validate PTFO 8-8695b as just the second Hot Jupiter known to orbit an M-dwarf. Our fits show a high degree of spin-orbit misalignment in the PTFO 8-8695 system: 69 +/- 2 or 73.1 +/- 0.5 degrees, in the two cases. The large misalignment is consistent with the hypothesis that planets become Hot Jupiters with random orbital plane alignments early in a system's lifetime. We predict that as a result of the highly misaligned, precessing system, the transits should disappear for months at a time over the course of the system's precession period. The precessing, gravity-darkened model also predicts other observable effects: changing orbit inclination that could be detected by radial velocity observations, changing stellar inclination that would manifest as varying v sin i, changing projected spin-orbit alignment that could be seen by the Rossiter-McLaughlin effect, changing transit shapes over the course of the precession, and differing lightcurves as a function of wavelength. Our measured planet radii of 1.64 R_Jup and 1.68 R_Jup in each case are consistent with a young, hydrogen-dominated planet that results from a hot-start formation mechanism.
View original: http://arxiv.org/abs/1308.0629

No comments:

Post a Comment