Monday, June 17, 2013

1306.3287 (Patryk Sofia Lykawka et al.)

Terrestrial Planet Formation During the Migration and Resonance Crossings of the Giant Planets    [PDF]

Patryk Sofia Lykawka, Takashi Ito
The newly formed giant planets may have migrated and crossed a number of mutual mean motion resonances (MMRs) when smaller objects (embryos) were accreting to form the terrestrial planets. We investigated the effects of the planetesimal-driven migration of Jupiter and Saturn, and the influence of their mutual 1:2 MMR crossing on terrestrial planet formation for the first time, by performing N-body simulations. These simulations considered distinct timescales of MMR crossing and planet migration. In total, 68 high-resolution simulation runs using 2000 disk planetesimals were performed, which was a significant improvement on previously published results. Even when the effects of the 1:2 MMR crossing and planet migration were included in the system, Venus and Earth analogs (considering both orbits and masses) successfully formed in several runs. In addition, we found that the orbits of planetesimals beyond a ~1.5-2 AU were dynamically depleted by the strengthened sweeping secular resonances associated with Jupiter's and Saturn's more eccentric orbits (relative to present-day) during planet migration. However, this depletion did not prevent the formation of massive Mars analogs (planets with more than 1.5 times Mars' mass). Although late MMR crossings (at t > 30 Myr) could remove such planets, Mars-like small mass planets survived on overly excited orbits (high e and/or i), or were completely lost in these systems. We conclude that the orbital migration and crossing of the mutual 1:2 MMR of Jupiter and Saturn are unlikely to provide suitable orbital conditions for the formation of solar system terrestrial planets. This suggests that to explain Mars' small mass and the absence of other planets between Mars and Jupiter, the outer asteroid belt must have suffered a severe depletion due to interactions with Jupiter/Saturn, or by an alternative mechanism (e.g., rogue super-Earths).
View original: http://arxiv.org/abs/1306.3287

No comments:

Post a Comment