William T. Reach, Michael S. Kelley, Jeremie Vaubaillon
We surveyed 23 comets using the Infrared Array Camera on the Spitzer Space Telescope in wide filters centered at 3.6 and 4.5 microns. Emission in the 3.6 micron filter arises from sunlight scattered by dust grains; these images generally have a coma near the nucleus and a tail in the antisolar direction due to dust grains swept back by solar radiation pressure. The 4.5 micron filter contains the same dust grains, as well as strong emission lines from CO2 and CO gas; these show distinct morphologies, in which cases we infer they are dominated by gas. Based on the ratio of 4.5 to 3.6 micron brightness, we classify the survey comets as CO2+CO "rich" and "poor." This classification is correlated with previous classifications by A'Hearn based on carbon-chain molecule abundance, in the sense that comets classified as "depleted" in carbon-chain molecules are also "poor" in CO2+CO. The gas emission in the IRAC 4.5 micron images is characterized by a smooth morphology, typically a fan in the sunward hemisphere with a radial profile that varies approximately as the inverse of projected distance from the nucleus, as would apply for constant production and free expansion. There are very significant radial and azimuthal enhancements in many of the comets, and these are often distinct between the gas and dust, indicating that ejection of solid material may be driven either by H2O or CO2. Notable features in the images include the following. There is a prominent loop of gas emission from 103P/Hartley 2, possible due to an outburst of CO2 before the Spitzer image. Prominent, double jets are present in the image of 88P/Howell. A prominent single jet is evident for 3 comets. Spirals are apparent in 29P and C/2006 W3; we measure a rotation rate of 21 hr for the latter comet. Arcs (possibly parts of a spiral) are apparent in the images of 10P/Tempel 2, and 2P/Encke.
View original:
http://arxiv.org/abs/1306.2381
No comments:
Post a Comment