Statia H. Luszcz-Cook, Imke de Pater
We present observations of Neptune's 1- and 3-mm spectrum from the Combined Array for Research in Millimeter-wave Astronomy (CARMA). Radiative transfer analysis of the CO (2-1) and (1-0) rotation lines was performed to constrain the CO vertical abundance profile. We find that the data are well matched by a CO mole fraction of 0.1^+0.2_-0.1 parts per million (ppm) in the troposphere, and 1.1^+0.2_-0.3 ppm in the stratosphere. A flux of 0.5-20 times 10^8 CO molecules cm-2 s-1 to the upper stratosphere is implied. Using the Zahnle et al. (2003) estimate for cometary impact rates at Neptune, we calculate the CO flux that could be formed from (sub)kilometer-sized comets; we find that if the diffusion rate near the tropopause is small (200 cm2 s-1), these impacts could produce a flux as high as 0.5^+0.8_-0.4 times 10^8 CO molecules cm-2 s-1. We also revisit the calculation of Neptune's internal CO contribution using revised calculations for the CO ->CH4 conversion timescale in the deep atmosphere (Visscher et al. 2011). We find that an upwelled CO mole fraction of 0.1 ppm implies a global O/H enrichment of at least 400, and likely more than 650, times the protosolar value.
View original:
http://arxiv.org/abs/1301.1990
No comments:
Post a Comment