Hai-Fu Ji, Li-Hua Ma, Guo-Xiang Ai, Hu-Li Shi
The Chinese Area Positioning System (CAPS), a navigation system based on GEO communication satellites, was developed in 2002 by astronomers at Chinese Academy of Sciences. Extensive positioning experiments of CAPS have been performed since 2005. On the basis of CAPS, this paper studies the principle of navigation constellation composed of Slightly Inclined Geostationary Orbit (SIGSO) communication satellites. SIGSO satellites are derived from end-of-life Geostationary Orbit (GEO) satellites under inclined orbit operation. Considering the abundant frequency resources of SIGSO satellites, multi-frequency observations could be conducted to enhance the precision of pseudorange measurements and ameliorate the positioning performence. The constellation composed of two GEO satellites and four SIGSO satellites with inclination of 5 degrees can provide the most territory of China with 24-hour maximum PDOP less than 42. With synthetic utilization of the truncated precise (TP) code and physical augmentation factor in four frequencies, navigation system with this constellation is expected to obtain comparable positioning performance with that of coarse acquisition code of GPS. When the new approach of code-carrier phase combinations is adopted, the system has potential to possess commensurate accuracy of precise code in GPS. Additionally, the copious frequency resources can also be used to develop new anti-interference techniques and integrate navigation and communication.
View original:
http://arxiv.org/abs/1211.5412
No comments:
Post a Comment