Friday, October 5, 2012

1210.1228 (Matthew M. Knight et al.)

A Quarter-Century of Observations of Comet 10P/Tempel 2 at Lowell Observatory: Continued Spin-Down, Coma Morphology, Production Rates, and Numerical Modeling    [PDF]

Matthew M. Knight, David G. Schleicher, Tony L. Farnham, Edward W. Schwieterman, Samantha R. Christensen
We report on photometry and imaging of Comet 10P/Tempel 2 obtained at Lowell Observatory from 1983 through 2011. We measured a nucleus rotation period of 8.950 +/- 0.002 hr from 2010 September to 2011 January. This rotation period is longer than the period we previously measured in 1999, which was itself longer than the period measured in 1988. A nearly linear jet was observed which varied little during a rotation cycle in both R and CN images acquired during the 1999 and 2010 apparitions. We measured the projected direction of this jet throughout the two apparitions and, under the assumption that the source region of the jet was near the comet's pole, determined a rotational pole direction of RA/Dec = 151deg/+59deg from CN measurements and RA/Dec = 173deg/+57deg from dust measurements (we estimate a circular uncertainty of 3deg for CN and 4deg for dust). Different combinations of effects likely bias both gas and dust solutions and we elected to average these solutions for a final pole of RA/Dec = 162 +/- 11deg/+58 +/- 1deg. Photoelectric photometry was acquired in 1983, 1988, 1999/2000, and 2010/2011. The activity exhibited a steep turn-on ~3 months prior to perihelion (the exact timing of which varies) and a relatively smooth decline after perihelion. The activity during the 1999 and 2010 apparitions was similar; limited data in 1983 and 1988 were systematically higher and the difference cannot be explained entirely by the smaller perihelion distance. We measured a "typical" composition, in agreement with previous investigators. Monte Carlo numerical modeling with our pole solution best replicated the observed coma morphology for a source region located near a comet latitude of +80deg and having a radius of ~10deg. Our model reproduced the seasonal changes in activity, suggesting that the majority of Tempel 2's activity originates from a small active region located near the pole.
View original: http://arxiv.org/abs/1210.1228

No comments:

Post a Comment