Tuesday, September 11, 2012

1209.2031 (Pierantonio Cinzano et al.)

The propagation of light pollution in the atmosphere    [PDF]

Pierantonio Cinzano, Fabio Falchi
Methods to map artificial night sky brightness and stellar visibility across large territories or their distribution over the entire sky at any site are based on the computation of the propagation of light pollution with Garstang models, a simplified solution of the radiative transfer problem in the atmosphere which allows a fast computation by reducing it to a ray-tracing approach. We present here up-to-date Extended Garstang Models (EGM) which provide a more general numerical solution for the radiative transfer problem applied to the propagation of light pollution in the atmosphere. We also present the LPTRAN software package, an application of EGM to high-resolution DMSP-OLS satellite measurements of artificial light emissions and to GTOPO30 digital elevation data, which provides an up-to-date method to predict the artificial brightness distribution of the night sky at any site in the World at any visible wavelength for a broad range of atmospheric situations and the artificial radiation density in the atmosphere across the territory. EGM account for (i) multiple scattering, (ii) wavelength from 250 nm to infrared, (iii) Earth curvature and its screening effects, (iv) sites and sources elevation, (v) many kinds of atmosphere with the possibility of custom setup (e.g. including thermal inversion layers), (vi) mix of different boundary layer aerosols and tropospheric aerosols, with the possibility of custom setup, (vii) up to 5 aerosol layers in upper atmosphere including fresh and aged volcanic dust and meteoric dust, (viii) variations of the scattering phase function with elevation, (ix) continuum and line gas absorption from many species, ozone included, (x) up to 5 cloud layers, (xi) wavelength dependant bidirectional reflectance of the ground surface from NASA/MODIS satellites, main models or custom data (snow included), (xii) geographically variable upward light emission function.
View original: http://arxiv.org/abs/1209.2031

No comments:

Post a Comment