Friday, June 29, 2012

1206.6509 (Ludmilla Kolokolovaa et al.)

Polarization of light scattered by large aggregates    [PDF]

Ludmilla Kolokolovaa, Daniel Mackowski
Study of cosmic dust and planetary aerosols indicate that some of them contain a large number of aggregates of the size that significantly exceeds the wavelengths of the visible light. In some cases such large aggregates may dominate in formation of the light scattering characteristics of the dust. In this paper we present the results of computer modelling of light scattering by aggregates that contain more than 1000 monomers of submicron size and study how their light scattering characteristics, specifically polarization, change with phase angle and wavelength. Such a modeling became possible due to development of a new version of MSTM (Multi Sphere T-Matrix) code for parallel computing. The results of the modeling are applied to the results of comet polarimetric observations to check if large aggregates dominate in formation of light scattering by comet dust. We compare aggregates of different structure and porosity. We show that large aggregates of more than 98% porosity (e.g. ballistic cluster-cluster aggregates) have angular dependence of polarization almost identical to the Rayleigh one. Large compact aggregates (less than 80% porosity) demonstrate the curves typical for solid particles. This rules out too porous and too compact aggregates as typical comet dust particles. We show that large aggregates not only can explain phase angle dependence of comet polarization in the near infrared but also may be responsible for the wavelength dependence of polarization, which can be related to their porosity.
View original: http://arxiv.org/abs/1206.6509

No comments:

Post a Comment