Tuesday, June 5, 2012

1206.0558 (Hajime Kawahara et al.)

Can Ground-based Telescopes Detect The Oxygen 1.27 Micron Absorption Feature as a Biomarker in Exoplanets ?    [PDF]

Hajime Kawahara, Taro Matsuo, Michihiro Takami, Yuka Fujii, Takayuki Kotani, Naoshi Murakami, Motohide Tamura, Olivier Guyon
The oxygen absorption line imprinted in the scattered light from the Earth-like planets has been considered as the most promising metabolic biomarker of the exo-life. We examine the feasibility of the detection of the oxygen 1.27 micron band from habitable exoplanets, in particular, around late-type stars with a 30 m class ground-based telescope with a future instrument. We analyzed the night airglow around 1.27 micron with IRCS/echelle spectrometer on Subaru and found that the strong telluric emission from atmospheric oxygen molecules declines by an order of magnitude by the midnight. With compilation of nearby star catalogues combined with the sky background model, we estimate the detectability of the oxygen absorption band from an Earth twin, if exists, around nearby stars. We find that the most dominant photon noise of the oxygen 1.27 micron detection comes from the night airglow if the leakage is suppressed enough to detect the planet. We conclude that the future detectors for which the detection contrast is limited by photon noise can detect the oxygen 1.27 micron absorption band of the Earth twins for \sim 100 candidates of the late type star. This paper demonstrates the importance of deploying small inner working angle efficient coronagraph and extreme adaptive optics on extremely large telescopes, and clearly shows that doing so will enable study of potentially habitable planets.
View original: http://arxiv.org/abs/1206.0558

No comments:

Post a Comment