Tuesday, May 22, 2012

1205.4615 (Alexandre C. M. Correia et al.)

Impact cratering on Mercury: consequences for the spin evolution    [PDF]

Alexandre C. M. Correia, Jacques Laskar
Impact basins identified by Mariner 10 and Messenger flyby images provide us a fossilized record of the impactor flux of asteroids on Mercury during the last stages of the early Solar System. The distribution of these basins is not uniform across the surface, and is consistent with a primordial synchronous rotation (Wieczorek et al. 2012). By analyzing the size of the impacts, we show that the distribution for asteroid diameters D < 110 km is compatible with an index power law of 1.2, a value that matches the predicted primordial distribution of the main-belt. We then derive a simple collisional model coherent with the observations, and when combining it with the secular evolution of the spin of Mercury, we are able to reproduce the present 3/2 spin-orbit resonance (about 50% of chances), as well as a primordial synchronous rotation. This result is robust with respect to variations in the dissipation and collisional models, or in the initial spin state of the planet.
View original: http://arxiv.org/abs/1205.4615

No comments:

Post a Comment