Jason H. Steffen, Daniel C. Fabrycky, Eric B. Ford, Joshua A. Carter, Jean-Michel Desert, Francois Fressin, Matthew J. Holman, Jack J. Lissauer, Althea V. Moorhead, Jason F. Rowe, Darin Ragozzine, William F. Welsh, Natalie M. Batalha, William J. Borucki, Lars A. Buchhave, Steve Bryson, Douglas A. Caldwell, David Charbonneau, David R. Ciardi, William D. Cochran, Michael Endl, Mark E. Everett, Thomas N. Gautier III, Ron L. Gilliland, Forrest R. Girouard, Jon M. Jenkins, Elliott Horch, Steve B. Howell, Howard Isaacson, Todd C. Klaus, David G. Koch, David W. Latham, Jie Li, Philip Lucas, Phillip J. MacQueen, Geoffrey W. Marcy, Sean McCauliff, Christopher K. Middour, Robert L. Morris, Fergal R. Mullally, Samuel N. Quinn, Elisa V. Quintana, Avi Shporer, Martin Still, Peter Tenenbaum, Susan E. Thompson, Joseph D. Twicken, Jeffery Van Cleve
We present a method to confirm the planetary nature of objects in systems
with multiple transiting exoplanet candidates. This method involves a
Fourier-Domain analysis of the deviations in the transit times from a constant
period that result from dynamical interactions within the system. The
combination of observed anti-correlations in the transit times and mass
constraints from dynamical stability allow us to claim the discovery of four
planetary systems Kepler-25, Kepler-26, Kepler-27, and Kepler-28, containing
eight planets and one additional planet candidate.
View original:
http://arxiv.org/abs/1201.5412
No comments:
Post a Comment