Thursday, January 12, 2012

1201.2293 (F. Marzari et al.)

Eccentricity of radiative discs in close binary-star systems    [PDF]

F. Marzari, C. Baruteau, H. Scholl, P. Thebault
Discs in binaries have a complex behavior because of the perturbations of the companion star. Planet formation in binary-star systems both depend on the companion star parameters and on the properties of the circumstellar disc. An eccentric disc may increase the impact velocity of planetesimals and therefore jeopardize the accumulation process. We model the evolution of discs in close binaries including the effects of self-gravity and adopting different prescriptions to model the disc's radiative properties. We focus on the dynamical properties and evolutionary tracks of the discs. We use the hydrodynamical code FARGO and we include in the energy equation heating and cooling effects. Radiative discs have a lower disc eccentricity compared to locally isothermal discs with same temperature profile. As a consequence, we do not observe the formation of an internal elliptical low density region as in locally isothermal disc models. However, the disc eccentricity depends on the disc mass through the opacities. Akin to locally isothermal disc models, self-gravity forces the disc's longitude of pericenter to librate about a fixed orientation with respect to the binary apsidal line ($\pi$). The disc's radiative properties play an important role in the evolution of discs in binaries. A radiative disc has an overall shape and internal structure that are significantly different compared to a locally isothermal disc with same temperature profile. This is an important finding both for describing the evolutionary track of the disc during its progressive mass loss, and for planet formation since the internal structure of the disc is relevant for planetesimals growth in binary systems. The non-symmetrical distribution of mass in these discs causes large eccentricities for planetesimals that may affect their growth.
View original: http://arxiv.org/abs/1201.2293

No comments:

Post a Comment