Friday, December 16, 2011

1112.3438 (Patryk Sofia Lykawka et al.)

The dynamical evolution of dwarf planet (136108) Haumea's collisional family: General properties and implications for the trans-Neptunian belt    [PDF]

Patryk Sofia Lykawka, Jonathan Horner, Tadashi Mukai, Akiko M. Nakamura
Recently, the first collisional family was identified in the trans-Neptunian belt. The family consists of Haumea and at least ten other ~100km-sized trans-Neptunian objects (TNOs) located in the region a = 42 - 44.5 AU. In this work, we model the long-term orbital evolution of an ensemble of fragments representing hypothetical post-collision distributions at the time of the family's birth. We consider three distinct scenarios, in which the kinetic energy of dispersed particles were varied such that their mean ejection velocities (veje) were of order 200 m/s, 300 m/s and 400 m/s, respectively. Each simulation considered resulted in collisional families that reproduced that currently observed. The results suggest that 60-75% of the fragments created in the collision will remain in the trans-Neptunian belt, even after 4 Gyr of dynamical evolution. The surviving particles were typically concentrated in wide regions of orbital element space centred on the initial impact location, with their orbits spread across a region spanning {\Delta}a ~ 6-12 AU, {\Delta}e ~ 0.1-0.15 and {\Delta}i ~ 7-10{\deg}. Most of the survivors populated the so-called Classical and Detached regions of the trans-Neptunian belt, whilst a minor fraction entered the Scattered Disk reservoir (<1%), or were captured in Neptunian mean motion resonances (<10%). In addition, except for those fragments located near strong resonances, the great majority displayed negligible long-term orbital variation. This implies that the orbital distribution of the intrinsic Haumean family can be used to constrain the orbital conditions and physical nature of the collision that created the family, billions of years ago. Indeed, our results suggest that the formation of the Haumean collisional family most likely occurred after the bulk of Neptune's migration was complete, or even some time after the migration had completely ceased.
View original: http://arxiv.org/abs/1112.3438

No comments:

Post a Comment