C. A. Giuppone, P. Benitez-Llambay, C. Beauge
We analyze the possibilities of detection of hypothetical exoplanets in
coorbital motion from synthetic radial velocity (RV) signals, taking into
account different types of stable planar configurations, orbital eccentricities
and mass ratios. For each nominal solution corresponding to small-amplitude
oscillations around the periodic solution, we generate a series of synthetic RV
curves mimicking the stellar motion around the barycenter of the system. We
then fit the data sets obtained assuming three possible different orbital
architectures: (a) two planets in coorbital motion, (b) two planets in a 2/1
mean-motion resonance, and (c) a single planet. We compare the resulting
residuals and the estimated orbital parameters.
For synthetic data sets covering only a few orbital periods, we find that the
discrete radial velocity signal generated by a coorbital configuration could be
easily confused with other configurations/systems, and in many cases the best
orbital fit corresponds to either a single planet or two bodies in a 2/1
resonance. However, most of the incorrect identifications are associated to
dynamically unstable solutions.
We also compare the orbital parameters obtained with two different fitting
strategies: a simultaneous fit of two planets and a nested multi-Keplerian
model. We find that the nested models can yield incorrect orbital
configurations (sometimes close to fictitious mean-motion resonances) that are
nevertheless dynamically stable and with orbital eccentricities lower than the
correct nominal solutions.
Finally, we discuss plausible mechanisms for the formation of coorbital
configurations, by the interaction between two giant planets and an inner
cavity in the gas disk. For equal mass planets, both Lagrangian and
anti-Lagrangian configurations can be obtained from same initial condition
depending on final time of integration.
View original:
http://arxiv.org/abs/1112.0223
No comments:
Post a Comment