Friday, November 4, 2011

1111.0667 (Margaret Pan et al.)

Self-consistent size and velocity distributions of collisional cascades    [PDF]

Margaret Pan, Hilke E. Schlichting
The standard theoretical treatment of collisional cascades derives a steady-state size distribution assuming a single constant velocity dispersion for all bodies regardless of size. Here we relax this assumption and solve self-consistently for the bodies' steady-state size and size-dependent velocity distributions. Specifically, we account for viscous stirring, dynamical friction, and collisional damping of the bodies' random velocities in addition to the mass conservation requirement typically applied to find the size distribution in a steady-state cascade. The resulting size distributions are significantly steeper than those derived without velocity evolution. For example, accounting self-consistently for the velocities can change the standard q=3.5 power-law index of the Dohnanyi (1969) differential size spectrum to an index as large as q=4. Similarly, for bodies held together by their own gravity, the corresponding power-law index range 2.88View original: http://arxiv.org/abs/1111.0667

No comments:

Post a Comment