Mathieu Vincendon, Cedric Pilorget, Brigitte Gondet, Scott Murchie, Jean-Pierre Bibring
Carbon dioxide clouds, which are speculated by models on solar and
extra-solar planets, have been recently observed near the equator of Mars. The
most comprehensive identification of Martian CO2 ice clouds has been obtained
by the near-IR imaging spectrometer OMEGA. CRISM, a similar instrument with a
higher spatial resolution, cannot detect these clouds with the same method due
to its shorter wavelength range. Here we present a new method to detect CO2
clouds using near-IR data based on the comparison of H2O and CO2 ice spectral
properties. The spatial and seasonal distributions of 54 CRISM observations
containing CO2 clouds are reported, in addition to 17 new OMEGA observations.
CRISM CO2 clouds are characterized by grain size in the 0.5-2\mum range and
optical depths lower than 0.3. The distributions of CO2 clouds inferred from
OMEGA and CRISM are consistent with each other and match at first order the
distribution of high altitude (>60km) clouds derived from previous studies. At
second order, discrepancies are observed. We report the identification of H2O
clouds extending up to 80 km altitude, which could explain part of these
discrepancies: both CO2 and H2O clouds can exist at high, mesospheric
altitudes. CRISM observations of afternoon CO2 clouds display morphologies
resembling terrestrial cirrus, which generalizes a previous result to the whole
equatorial clouds season. Finally, we show that morning OMEGA observations have
been previously misinterpreted as evidence for cumuliform, and hence
potentially convective, CO2 clouds.
View original:
http://arxiv.org/abs/1103.3448
No comments:
Post a Comment