Wednesday, October 26, 2011

1110.3648 (Philippe Thebault)

A new code to study structures in collisionally active, perturbed debris discs. Application to binaries    [PDF]

Philippe Thebault
Debris discs are traditionally studied using two distinct types of numerical models: statistical particle-in-a-box codes to study their collisional and size distribution evolution, and dynamical N-body models to study their spatial structure. The absence of collisions from N-body codes is in particular a major shortcoming, as collisional processes are expected to significantly alter the results obtained from pure N-body runs. We present a new numerical model, to study the spatial structure of perturbed debris discs at dynamical and collisional steady-state. We focus on the competing effects between gravitational perturbations by a massive body (planet or star), collisional production of small grains, and radiation pressure placing these grains in possibly dynamically unstable regions. We consider a disc of parent bodies at dynamical steady-state, from which small radiation-pressure-affected grains are released in a series of runs, each corresponding to a different orbital position of the perturber, where particles are assigned a collisional destruction probability. These collisional runs produce successive position maps that are then recombined, following a complex procedure, to produce surface density profiles for each orbital position of the perturbing body. We apply our code to the case of a circumprimary disc in a binary. We find pronounced structures inside and outside the dynamical stability regions. For low $e_B$, the disc's structure is time varying, with spiral arms in the dynamically "forbidden" region precessing with the companion star. For high $e_B$, the disc is strongly asymmetric but time invariant, with a pronounced density drop in the binary's periastron direction. (better resolution version of the paper at http://lesia.obspm.fr/perso/philippe-thebault/theb2011.pdf)
View original: http://arxiv.org/abs/1110.3648

No comments:

Post a Comment